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AIJstract-An exact solution is presented for the thermo-elastic/plastic problem of a thick-walled sphere
subjected to a radial temperature gradient. Material behaviour is described by the von-Mises ftow rule in
conjunction with a modified Ramberg-osgood stress-strain characteristic. The problem is formulated
within the framework of small strain plasticity. Contact is made with earlier studies for elastic/perfectly­
plastic and pure power-hardening materials. Also given are a few basic results for elasticllinear-hardening
materials.

INTRODUCTION

The spherical symmetric behaviour of an elastic/perfectly-plastic thick-walled sphere, subjected
to a radial temperature gradient, has been studied analytically in [1, 2]. Recently, [3], an exact
solution has been given for the same problem using a pure power-hardening law. These studies
treated the steady-state, time independent, thermo-elastic/plastic behaviour. The more 'difficult
transient thermal problem has been investigated numerically in [4, 5].

Here we investigate the steady-state problem for an elastic/plastic material, assuming a
modified Ramberg-osgood stress-strain relation. The uniaxial stress-strain curve is commonly
written as

E=!+Ep (1)

where E is the total strain, the nondimensional effective stress ! is identified here with the
uniaxial stress CT divided by the elastic modulus E, and Ep is the total plastic strain and a known
function of !. In the present paper we borrow an idea from Budiansky[6] and assume that

Ep = 0 for ! E;!y, with !y = ~

[
! "-I ]

Ep=! (!J -1 -(1-2v)(!-!y) for !;;;J:!y

(2a)

(2b)

where Y is the yield stress, n is the hardening parameter and v is Poisson's ratio. For an
incompressible material v = 1/2 and relation (2b) becomes identical with the one employed in
[6] for investigating a stress concentration problem. These modifications of the Ramberg­
Osgood relation offer the advantage of deriving exact solutions for the respective problems.
Comparing modification (2b) with the original relation suggested by Budiansky in [6], we note
that the ratio of the respective total strains (1) is 1- TJ where

(3)

It can now easily be shown that TJ ~ 1. The highest value of TJ is attained at the stress level
! = (n!(n -l)!y. With v = 1/3, for example, we have TJmax (n = 3) = 0.049, TJmax (5) = 0.027,
TJmax (10) = 0.013 and TJmax (20) =0.0063. For higher values of the hardening parameter n, the
maximum value of TJ approaches the asymptote (1- 2v)/en. Thus, the present modification of
the Ramberg-Osgood relation remains in close agreement with the modification used in [6].

tOn sabbatical leave (until September 1983). Permanent address: Department of Aeronautical Engineering Technion-
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More important, the uniaxial stress-strain curve of many metals can be closely approximated
by relations (2a, b), thus facilitating the analysis of our problem.

The basic equations are set in the next section within the framework of small strain
plasticity. The radial temperature gradient is assumed to be given by the steady state profile that
corresponds to outward radial flow of heat. Subsequently, we analyze the various stages of the
loading path. The overall picture is similar to the one presented in [1, 2] for an elastic/perfectly­
plastic material. Yielding begins at the inner surface and a second plastic zone may occur, with
further increase in the temperature gradient. The solution centers on determining the exact
location of the elastic/plastic interfaces as a function of geometry, material hardening and
temperature gradient. Contact is made with the earlier results presented in [1-3].

Finally, we give a brief discussion of this thermo-elastic/plastic problem for an elas­
tic/linear-hardening material. Relation (2b) is now replaced by

I-h E
EP=-h-(I-I y) for I~Iy, with h=;- (4)

where ET is the constant tangent modulus.
While the analysis for that material is simpler in comparison with material (2b), it has to be

noted that relation (4) provides a less realistic approximation to the actual uniaxial stress-strain
curve.

PROBLEM FORMULATION

A thick walled sphere (a ~ r ~ b) is slowly heated by raising monotonously the temperature
difference between the boundaries. Observing the spherical symmetry of the field and assuming
(as will be verified later) continuous plastic loading, we can write the constitutive relations as

Er = I r - 2vIe+aT - mEp (5)

(6)

where, with the usual notation, Er and Ee are the strain components, I r and Ie are the stress
components (nondimensionalized with respect to E), ex is the coefficient of thermal expansion,
and T the temperature change. The effective stress is here conveniently written as

I = - m(I r -Ie) with m = - sgn (I r -Ie).

The strains are related to the radial displacement w through

dw w
Er ='dr' Ee =,

which, when combined, result in the compatibility equation

(7)

(8)

(9)

where p = ria is the nondimensional radial coordinate (I.e;; p~ {3 where (3 =b/a is the radii
ratio).

Finally, we have the single equilibrium equation which, in view of (7), may be put in the
form

dI r =2m~.
dp p

(10)
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Inserting now (5) and (6) in (9), noting (7) and using (10), gives the basic differential equation

or, after integration,

d 3 dT
-d [2(1- v)I + Ep ] +- [2(1- v)I + Ep] = -2ma-

dp p p

2ma f 3 (dT)2(1 - v)I +Ep = -7 p dp dp +constant.

(11)

(12)

In this study we assume that the radial temperature profile is given by the steady state
distribution, with the corresponding gradient

(13)

and tJ.T stands for the positive temperature difference between the inner and outer surfaces.
Substituting (13) in (12), integrating and arranging, we obtain

2(1- v)I+ Ep = m6k G-?), 6 = atJ.T (14)

where C is a constant. In passing, however, we note that the subsequent analysis is not
restricted to the steady state temperature distribution.

(Relation (14) clarifies the advantage of using representation (2b); inserting the latter in (14)
leads to an explicit expression for the radial dependence of the effective stress. It is worth
mentioning, however, that (2b) is not the only possible modification, of the Ramberg-Osgood
relation, with that useful property. Just to give an example, consider the two parameter family

EP=K[(I:)" -1]-2(1-v)(I-Iy) for I;;.Iy

where n, K are material constants. The tangent modulus at the yield point I = I y can be made
continuous with the choice K = 2(1- v)Iy/n.)

Prior to the occurence of plastic yielding, the whole sphere is in a purely elastic state with
Ep 55 O. This is of course a well known problem and we shall just recapitulate the basic results
for future use. Relation (14) becomes here

(15)

Inserting (15) in (10) and integrating over p, with the initial condition I r = 0 at p = 1, gives the
radial stress component

I r=~ [l_.!_f (I--A)].
I-v p 3 p (16)

The value of constant C follows from the condition that the outer surface (p = {3) is stress free
(I r = 0), namely

(17)

The radial stress (16) is now completely determined. The circumferential stress component is
then obtained from (15) to (16) with the aid of the first of (7), and the radial displacement
follows from (6) and the second of (8).
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Combining (15) with (17) we find, [1-2], that the effective stress attains its highest value aUhe
inner surface. Yielding will therefore begin at P = 1 when I = I y , i.e. when the temperature
difference is

where

(18)

8* = 8
2(1- v)I y

aATE
2(1- v)Y'

(19)

The value of m used in deriving (18) was m = - I. A helpful notion in this context is that of
the "hydrostatic surface" P = Po where all stress components are equal. Obviously, the effective
stress (15) vanishes at po so that in the complete elastic state

(20)

It is now a matter of ease to verify that m = - 1 for 1 0;;; P 0;;; Po and m = I for Po 0;;; P 0;;; (3, since
the effective stress is always positive.

THE FIRST PLASTIC ZONE

The onset of plastic yielding at the inner surface is followed, as the temperature difference
increases beyond (18), by the growth of a plastic zone spanning over the range 10;;; po;;; PI where
PI denotes the elastic/plastic interface. The basic relation within that plastic zone is obtained by
substituting the effective stress (2b) in (14), with m = - 1, resulting in

(I )"-1 (C 1)I I y + (1 - 2v)I y = Ok p; -p .

However, at the interface P =PI we have I =I y , and so

where

_ * _(-L) aATE
r-k8 - (3-1 2(1-v)Y'

The effective stress within the plastic zone follows now from (21) to (22) as

(21)

(22)

(23)

(24)

Inserting (24) in the equilibrium equation (10), with m = - 1, and integrating over P, with the
initial condition I, = 0 at P = I, gives

I = -2I [2(1-v)]"" fP[P/(PI+T)_~_1-2v]1I"dP.
,y JI p3 P 2- 2v P

(25)

Within the elastic zone, PI 0;;; P 0;;; (3, we have again relation (15) with the condition that at the
interface I =I y , with m = - I. Constant C is therefore again given by (22) and the effective
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(26)

where m = - 1 for P, E; P E; Po, and m =1 for Po E; P E; /3. The hydrostatic surface is here given
by

(27)

Substituting (26) in (10) and integrating over p, with the condition that I r =0 at P =/3, we get

Now, continuity of radial stress at the elastic/plastic interface requires that expressions (25)
and (23) should agree at P=Pl' This condition leads to the transcendental equation

which determines the location of the interface PI as a function of geometry (/3), temperature
difference ('T) and material properties (n, v). When n-+(Xl equation (29) reduces to the one
derived in [1, 2], for an elastic/perfectly-plastic material, where the l.h.s. of (29) is replaced by
lnp,.

Once the value of PI has been determined, from (29), the entire stress field within the sphere
is readily available. For the plastic phase we have (24) and (25) together with the first of (7),
while for the elastic phase we have again the first of (7), (26) and (28). The corresponding
expressions for the radial displacement follow then without di1ticulty.

The relations derived hitherto, in this section, hold as long as no second plastic zone arises.
For sufficiently "thick" shells, second yield will occur within the elastic zone at the radius
P =: P2 where the effective stress (26) has a maximum. Differentiating (26) we find that this
happens at

(30)

where 'T and PI are here evaluated at the onset of the second plastic zone. Observing now that
I =: Iv at P =P2 we obtain from (26), with m =I, a second relation for (P2, Ph 'T). Combining
the latter with (30) we find that

2 1
P2 =3' 'T, PI =3' 'T (31)

(32)

at the initiation of a second plastic zone in "thick" shells. Note that P2 =2Pl and that the
corresponding value of the hydrostatic surface is Po =(2/y3)PI =(2/3Y3}r. The critical value
of 'T is obtained, from (29) and the second of (31), as the solution of the equation

[2(1- vnt'ft 1(1/3).. [4'T
3

_!._l- 2v]1/1l~ = (313 -t) (45 Q2 -12Q'T -4 2\
I 27p3 P 2-2v p 81/3 f" f" 'T]

When n -+ (Xl the l.h.s. of (32) reduces to In ('T/3) in agreement with the result in [2] for an
elastic/perfectly-plastic material.

On the other hand, if the shell is sufficiently "thin" then the second yield zone will always
begin at the outer surface p ={3. The limiting value of {3, which separates "thick" shells from
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"thin" shells, is obtained from the first of (31), with P2 ~ 13 = (2/3)T, together with (32). Thus

_ lin f(1/2)13 (13 3 313 1- 2v)l/n dp 1
(l v) -,------ -=-.

I P P I-v P 3
(33)

The solution of (33) is shown in Fig. 1 as a function of the hardening parameter n and for two
different values of v. It may be seen that Poisson's ratio has little effect on the limiting value of
13· For large values of n the limiting value of 13 approaches asymptotically the limiting value for
an elastic/perfectly-plastic material. Equation (33) is then simply in (1/2)13 = 1/3 with the
solution, [1]-[2], 13 = 2.791. The approach towards that asymptote is shown in Fig. 1 and we
may conclude that the hardening parameter does not influence much the limiting value of 13.

For "thin" shells, with radii ratios below the limiting value given by (33), we get from (26)
that at the onset of the second yield zone

(34)

where the values of I = I y , p = 13 and m = 1 have been used. Substituting (34) in (29) we arrive
at a single equation for the location of the elastic/plastic interface PI> when the outer surface
just reaches the yield point, namely

[2(1- v)]lln (PI [(~) -;_ (13+~) l_I-2V]1In dp =2(13 _PI)2. (35)
JI 13 - PI P 13 - PI P 2- 2v P 3f3PI

The solution of this equation provides, via (34), the temperature difference that corresponds to
the initiation of a second plastic zone at the outer surface.

Figure 2 displays the dependence of the temperature difference 8*, as obtained from (32) for
"thick" shell, and from (35) to (34) for "thin" shells, on 13 and material properties. Note again
that with n -+ 00 the l.h.s. of (35) is simply In PI in agreement with [1,2]. Also shown in Fig. 2 is
the temperature difference (18) required for first plastic yielding to occur at the inner surface.

THE SECOND PLASTIC ZONE FOR "THIN" SHELLS

If the temperature difference is raised even further, after the occurrence of second yield,
then a second plastic zone will develop and increase in size as AT increases. In this section we
shall consider the more practical case of "thin" shells where the second plastic zone starts at
the outer surface. There is however no difficulty in extending the following analysis to "thick"
shells where second yield occurs within the shell.

The shell is now divided into three different zones; the first plastic zone 1". P ". PI> the
elastic zone PI ". P ". P2, and the second plastic zone P2'" P ". 13. The problem lies in finding the
location of the elastic/plastic interfaces (PI> P2) as a function of geometry, material properties
and temperature difference.

The results derived earlier, (21)-(25), for a single plastic zone apply here as well for the first
plastic zone. For the elastic zone we take (15) and implement the two yield conditions I = I y at

13

V=O.5
13=2.791

2.8

~V=O.25
I

2.4

2.0
0 10 20 30 n

Fig. l. The limiting value of the radii ratio 13 as a function of the hardening parameter n. The asymptotic
value f3 = 2.791 is the exact solution for an elastic/perfectly-plastic material.
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Fig. 2. Temperature difference required for the onset of a second plastic lone. The lower curve shows the
temperature difference when yielding first begins at the inner surface.

P= PI (with m = -1) and at P = P2 (with m = 1). This gives the two relations

(36)

(37)

Note that the location of the hydrostatic surface (I =0) is now given by (36)•.
The distribution of the radial stress within the elastic zone follows from (10) and (IS), and is

governed by the differential relation

where C is given by (36).
Within the second plastic zone we get from (14), with m = I, and from (2b) that

(I )"-1 (1 C)I I
y

+(l-211)I y = 8k p-? .

At the interface P = P2 we have I = I y, which determines C as

(38)

(39)

(40)

Combining (39) with (40) gives the expression for the effective stress, within the second plastic
zone, viz

(41)

(42)

Inserting now (41) in (10), with m = I, and integrating over p with the initial condition I, =0
at p =13, we find that

I, =-2I y [2(1- JI)]II"l/J [P2
2
(P23-

T
) +2:._ 1 - 211]1I"~.

p P P 2-211 P

Finally, we integrate (38) over the elastic zone and substitute the boundary values, at the
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interfaces Ph P2' as obtained from (25) and (42) respectively. The result can be put in the form

fPI [PI2(PI/ T) _ 2: _ 1- 2vJ'/n dp _ ffJ [P/(P2
3
- T) +2: _ 1- 2vJ'/n dp = ~ [2(1- vWlln (P2 - p,f.

I P P 2 - 2v P P2 P P 2- 2v P 3 PIP2

(43)

Equation (43) together with relation (37) may now be solved quite easily, using a standard
numerical scheme, for the unknowns Ph P2 as a function of T, {3, n, v. The associated expres­
sions for the stress components and the radial displacement, within the entire sphere, follow
then almost immediately.

Wit!} n ~oo eqn (43) takes the simple form

(44)

which, together with (37), agree with the equivalent relations derived in [l] for an elastic/per­
fectly-plastic material.

The asymptotic behaviour of the shell, as T becomes very large, is given by the exact
solution for a pure power-hardening material, [3]. Indeed, when T ~ 00 we have that PI ~ P2~ Po,
where the equation for Po follows from (43) as

f
PO (~_1.)lIn dp -ffJ (1._~)lIn dp = O.

I P P P Po P P P
(45)

Equation (45) agrees, except a notational change, with the result derived earlier in [3]. That
reference contains also a chart presenting the solution of (45) as a function of {3 and n.

Figure 3 shows the movement of the elastic/plastic interfaces, and the hydrostatic surface,
as the temperature difference increases, for the particular geometry {3 =2 with n =3 (v = 1/3)
and with n = 00. The curves for the case n =3 were computed, according to the various stages
of the loading history, from (20), (29) and (27), and from (43) with (36) and (37). For the
elastic/perfectly-plastic material (n = (0) we have used the simpler relations that do not involve
numerical integration. Note that as 9* increases both interfaces approach the hydrostatic
surface given by (45).

A similar analysis for "thick" shells leads to two equations similar to (43), together with a
relation like (37), for the three elastic Iplastic interfaces. But even in that case the numerical
solution does not present a great difficulty.

2.0 f----r---------

1.2

n .. oo 1
n =3. v= 3""

1.4t~ ~::::P:o======:;~ ~ ~ f. v= _~_
...-::::::::::::::====== n =00 1~ n=3,v=T

1.8

1.0 1----olI:...I-_--J.__"--_-'-_--" _

o 2 3 4 e*
Fig. 3. Location of the elastic/plastic interfaces and the hydrostatic s~rface, as a function of temperature
difference, for f3 =2, with n =3{v =1/3) and n =00. Note that both mterfaces approach the hydrostatic

surface as 8* increases.

1.6
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A FEW BASIC RESULTS FOR ELASTIC/LINEAR-HARDENING MATERIALS

In the last section of this paper we present some useful relations for the elastic/linear­
hardening model (4). Within the first plastic zone we can write the analogue of (21) as

[ 1- h] 1-h (C 1)2(1- v)+-h- I--h-Iy = 9k /?-p (46)

where C is again given by (22). The expression for the effective stress, for l:os; P :os; Ph is
therefore

(47)

where H is the apparent tangent modulus defined by

(48)

Inserting (47) in (10) with m = - 1, and integrating we get the distribution of radial stress
component within the first plastic zone. The location of the elastic/plastic interface PI follows
upon equating the radial stress on both sides of the interface. This leads to the transcendental
equation

which may be compared with (29).
The onset of a second plastic zone for "thick" shells is again determined by relations (31).

Combining the second of (31) with (49) we obtain the equation for the critical temperature
difference, that corresponds to the initiation of the second plastic zone within the shell, namely

(50)

For "thin" shells, where second yielding begins at the outer surface, we combine relation (34)
with (49) in order to get the equation

(51)

for the location of the first elastic/plastic interface when yielding just occurs at P=~. The
solution of (51) provides, via (34), the corresponding temperature difference.

The limiting value of ~, below which the shell is regarded as "thin", follows either from (50),
or from (51) together with (34), when ~ =(2/3)7' =2pt. The final equation for the limiting value
of ~ can be written in the form

1 I (I J 3 4)In-~--+H -{3"--~+- =02 3 6 2 3 . (52)

Increasing the hardening parameter causes a decrease in the limiting radii ratio; starting with
~(H = 0) = 2.79 we get from (52) that ~(O.OI) =2.77, ~(0.05) =2.71 and ~(0.1) =2.66. These
results resemble those derived earlier for material (2b) and displayed in Fig. l.

The critical temperature difference 9*, at the onset of a second plastic zone, is shown in Fig.
4. These curves represent the respective solutions of (50), and (51) with (34). Note that all
material characteristics are lumped here into the single parameter H. When H =0 we recover
again the solution of [1, 2] for an elastic/perfectly-plastic material.
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Fig. 4. Temperature difference required for the onset of a second plastic zone in an elastic/linear-hardening
material.
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